细胞之所以能够长久地维持生存并将遗传信息传递给下一代,靠的是稳固的DNA。如果DNA发生突变、断裂,细胞很可能无法行使正常的功能乃至凋亡。作为延续生命的DNA,自然有办法免于伤害,即使不幸发生断裂现象,也可快速祭出“利器”——DNA修复蛋白进行修复。所谓“利器”,却是一把双刃剑,可能被肿瘤细胞利用,使肿瘤细胞免于凋亡。为了消灭肿瘤细胞,科学家们提出了“合成致死”的概念,而PARP抑制剂正是“合成致死”抗肿瘤新疗法的实践者。目前已获批上市的药物如下图所示,
PARP是一种聚ADP-核糖聚合酶,是DNA单链断裂(SSB)碱基切除修复(BER)途径中的重要蛋白质。PARP家族包括17个成员,其中 PARP1和PARP2主要通过碱基切除修复途径在DNA单链断裂时修复受损DNA,在调节转录以及细胞凋亡等细胞过程中发挥着重要作用。因此,针对DNA损伤修复机制的靶向治疗就成了近年来研究的热点。
本次在中国获批的他拉唑帕利(泰泽纳,Talzenna,通用名:甲苯磺酸他拉唑帕利胶囊)正是一种口服聚腺苷二磷酸核糖聚合酶(PARP,包括PARP1和PARP2)抑制剂。临床前研究表明,该产品可以阻断PARP酶活性,并在DNA损伤部位捕获PARP,从而减少癌细胞生长,诱导癌细胞死亡。2018年获得美国FDA批准(商品名为Talzenna),用于治疗患有BRCA突变人表皮生长因子受体2(HER2)阴性局部晚期或转移性乳腺癌的成人患者。2023年6月,该产品新适应症再获FDA批准,联合恩扎卢胺用于HRR基因突变的mCRPC患者的治疗。其关键III期研究TALAPRO-2中HRR突变队列研究结果显示,甲苯磺酸他拉唑帕利联合恩扎卢胺显著降低55%的疾病进展或死亡风险。
科学研究都是从巨大的不确定开始的,化合物5是BioMarin Pharmaceutical早期设计出的PARP抑制剂,计划从原料6(4-硝基异苯并呋喃酮)开始,通过路线A所示的五步反应制备化合物5。然而反应进行到第二步,在将化合物7转化为化合物8时,经多次尝试,仍无法得到目标产物。进而通过核磁与质谱对副产物进行解析,显示在这一步得到了一个具有全新结构的化合物12(如机理图B所示)。
研究人员意识到,肼关环后得到的化合物13可能是一个潜在的类似于AZD-2281的PARP抑制剂。事实也确实如此,环化后得到的化合物13的PARP酶活性达到了惊人的6.1nM,然而其细胞活性相对较弱(GI50>300uM)。鉴于此,科学家们将其作为先导化合物进行了后续的优化。
为了提高化合物的溶解性和细胞活性,首先将8和9位的苯环替换为芳香杂环,但是激酶活性大大下降,此外,将苯环替换为非芳香性的取代基,活性也下降。因此研究者保留了苯环,并在苯环上作出取代。
结果显示8位苯基的取代优于9位苯基的取代,其中化合物15虽然体外活性较好,但是代谢并不稳定,推测为9位苯基的对位存在羟基化,因此在对位引入不同的取代基,堵住了代谢位点,代谢得到一定程度的改善。
为了进一步提高代谢稳定性,在9位引入唑类取代苯环,在8位的对位引入F等取代基堵住代谢位点,代谢得到进一步提高,且活性得到保持,同时值得注意的是,在5位引入F相对其他体积更大的取代基活性最佳。而43和45的对比发现,三唑结构的微小变化将导致25倍的细胞活性差异,因此,基于该SAR结果,研究者最后确定出在5位引入F,在8位苯基对位引入F,在9位引入1-甲基-1,2,4-三唑,由此产生了活性最强的化合物47。
母核上8,9位的同时取代产生了两个手心中心,因此研究者优选了部分化合物进行手性拆分(顺式异构体活性低,且差率低,因此未探讨顺式异构体)并评价其体外活性,结果表明对映异构体中(8S,9R) 总是优于(8R,9S)的,这表明化合物在PARP激酶中的相互作用是存在立体定向性的。
对外消旋化合物47进行手性拆分,活性最佳的化合物(8S,9R)-47(BMN673)活性为外消旋体47的两倍,且对PARP1和2具有相同的抑制作用。
至此,Talazoparib(他拉唑帕利)的药化路线就顺利诞生了。
最开始的工艺生产路线是,内酯化合物2在30%HCl/MeOH中开环得到化合物3,然后经铁粉还原与化合物4环构化得到化合物5。经肼关环、拆分、成盐等步骤得到API。但是由于过程中使用到了盐酸,对设备要求较高;且铁粉还原蓄热现象在规模反应中更为突出,具备一定的局限性。
研究人员试图改变还原和内酯开环的顺序,但是无论采用钯催化和铂催化,没有监测到目标产物。
最终发现,采用催化量醋酸,当量的甲醇,在40度的苯甲醚中进行开环反应,再经MTBE处理析出晶体,实现了82%的收率。
研究发现,化合物3和化合物4采用一锅法催化氢化还原关环,Pt比Pd效果好,但是水解杂质占比过高。而往体系中加入3.0eq.的甲磺酸,水解杂质可以被有效抑制到低于0.5%,即使再延长时间也不会增大。至此,API路线被开发成功。
rac-(2S,3S)-7-Fluoro-2-(4-fluorophenyl)-5-(methoxy-carbonyl)-3-(1-methyl-1H-1,2,4-triazol-5-yl)-4-oxo-1,2,3,4-tetrahydroquinolin-1-ium Methanesulfonate (5·MeSO3H) from 2 via a Two-Step Telescoped Process
To a 2.0 L jacketed reactor were charged 2 (50.0 g, 172.3 mmol) and anisole (425 mL, 8.5 vol). The mixture was stirred at 20°C to give a yellow/orange slurry. To the slurry was charged MeOH (550 mL, 11.0 vol) in a single portion followed by MeSO3H (33.9 mL, 50.2 g, 516.9 mmol, 3 equiv) via an addition funnel. The addition funnel was rinsed with MeOH (50 mL, 1.0 vol). At this point the slurry had dissolved to give a clear yellow solution. The reaction mixture was heated to 30°C at 0.5 K/min and stirred until complete consumption of 2 was observed by UPLC, typically within 12 h. The mixture was cooled to 20°C at 0.5 K/min, followed by the addition of 4-fluorobenzaldehyde (21.3 mL, 24.6 g, 198.1 mmol, 1.15 equiv) via an addition funnel. The addition funnel was rinsed with MeOH (50 mL, 1.0 vol). The solution was transferred to a 2.0 L autoclave, followed by a rinse with MeOH (175 mL, 3.0 vol). Pt/C catalyst (3.5% w/w, 1.75 g) was added via an addition funnel, followed by a rinse with MeOH (50 mL, 1.0 vol). (N.B.: the total MeOH volume at the start of the hydrogenation was ca. 17.0 vol.) The reaction mixture was set to minimum agitation, purged with N2 (3 × 50 psig), cooled to 10°C, and then purged with H2 (3 × 50 psig). The vessel was pressurized with H2 to 50 psig, and then agitation was increased to maximum to commence the reaction. After the preliminary exotherm subsided (typically <30 min), the reaction mixture was warmed to 20°C and hydrogenated for a further 30 h until hydrogen uptake reached a stable plateau. The vessel was vented and purged with N2 (3 × 50 psig). The reaction mixture was filtered through a pad of Arbocel, washing with MeOH (250 mL, 5 vol). The combined filtrate and wash were charged to a 2.0 L jacketed vessel and distilled under vacuum (ca. 100 mbar, 20−30°C jacket temperature) until a final volume of 9−10 vol remained. Precipitation of solids was observed during the distillation, giving a mobile yellow slurry. The slurry was cooled to 20°C, and IPA (750 mL, 15 vol) was added over ca. 1 h. The slurry was aged overnight and collected by vacuum filtration. The cake was washed twice with IPA (2× 150 mL, 2 × 3 vol) and dried under vacuum to leave 5·MeSO3H (1:1 by 1H NMR) as a pale-yellow solid (59.2 g, 119.7 mmol, 69.5% yield). UPLC purity: >90 A%. 1H NMR (DMSO-d6, 400 MHz) δH : 7.90 (1H, bs), 7.88 (1H, s), 7.42−7.59 (2H, m), 7.05−7.26 (2H, m), 6.76 (1H, dd, J = 10.9 and 2.4 Hz), 6.57 (1H, dd, J = 8.5 and 2.4 Hz), 5.13−5.26 (1H, m), 5.02−5.11 (1H, m), 3.73 (3H, s), 3.59 (3H, s), 2.45 (3H, s). 13C NMR (DMSO-d6, 101 MHz) δC: 187.0 (1C, s), 168.4 (1C, d, J = 2.5 Hz), 165.9 (1C, d, J = 252.3 Hz), 161.9 (1C, d, J = 244.9 Hz), 154.1 (1C, d, J = 13.5 Hz), 150.33 (1C, s), 149.7 (1C, s), 137.9 (1C, d, J = 11.5 Hz), 134.7 (1C, d, J = 2.9 Hz), 130.1 (2C, d, J = 8.2 Hz), 115.2 (2C, d, J = 21.7 Hz), 110.0 (1C, s), 104.3 (1C, d, J = 26.3 Hz), 102.2 (1C, d, J = 24.2 Hz), 59.0 (1C, s), 52.4 (1C, s), 49.7 (1C, s), 39.7 (1C, s), 34.9 (1C, s). 19F NMR (DMSO-d6, 377 MHz) δF : −102.6 (1F, s), −113.4 (1F, s).
1. Discovery and Characterization of (8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly(ADP-ribose) Polymerase-1/2 Inhibitor, as an Anticancer Agent. J. Med. Chem. 2016, 59, 1, 335–357. https://doi.org/10.1021/acs.jmedchem.5b01498.
2. Development of an Intrinsically Safer Methanolysis/Aromatic Nitro Group Reduction for Step 1 and 2 of Talazoparib Tosylate. Org. Process Res. Dev. 2021, 25, 12, 2686–2692. https://doi.org/10.1021/acs.oprd.1c00259
评论
加载更多