2016年1月19日/生物谷BIOON/--美国国家标准与技术研究院(NIST)近期提出了一种高效、精确的DNA测序方法。通过将DNA分子从超薄的石墨片层结构的孔洞中拉动,通过测量石墨孔洞边缘产生的电位变化,从而实现高速、高精度、高效率的DNA测序。该方法不同于以前的桑格尔测序法以及第二代第三代测序法。相关工作发表在《Nanoscale》上。
NIST的研究表明,该方法可以在一秒钟时间内,识别约660亿个碱基, 而且有90%的准确性,并且没有假阳性(false positive)。现在的这个测序还仅仅停留在概念层次,如果真的能够被实验证明,该方法可能最终会比会常规DNA测序更快和更便宜,是真正面向未来的测序方法。
在20世纪70年代开发的常规测序,涉及分离、复制、打标签和DNA的重组件,来读取的遗传信息。NIST的新方法则基于将DNA拉过纳米孔道的理论。这个概念 开创于20年前,基于带电粒子(离子)通过纳米通道,会引起电位的变化。时至今日,这个想法仍然很流行,但会造成诸如不必要的背景电流信号噪声、或干扰,也面临着选择性不足的挑战。
相比之下,NIST的新测序流程,是要建立临时的化学键,依靠石墨烯的能力,从打破这些化学键,将机械应变信号转变为电流信号。这实际上是一个很小的应变传感器,科学家认为他们虽然没有发明完整的技术,但是提出了一个新的物理原则,即有可能是远远优于其他测序方法。由于它的电性能和小型化的薄膜结构,石墨烯是在纳米孔测序概念中非常合适。在新的NIST法,石墨烯纳米带(4.5X15.5纳米)上有多个纳米孔道(2.5纳米宽),其中可以通过碱基。
使用计算机模拟该系统在室温下在水中进行测序,胞嘧啶附着到纳米孔,可以检测到鸟嘌呤。甲单链DNA分子从纳米孔通过,当鸟嘌呤通过是,与胞嘧形成啶氢键。当DNA的不断移动,石墨烯被猛拉,然后滑回原来的位置,键锻裂,从而出现电流变化。
研究人员利用与理论相结合的模拟数据,来估计可测量信号变化的水平。信号强度是在毫安范围内,比早先的离子电流的纳米孔的方法信号更强。基于90%的准确率的性能,而无需任何误报(没有假阳性),研究人员认为,相同的DNA链的四次独立的测量将产生99.99%的精度,可以达到测序人类基因组所需要的精确度。
理论分析表明,基本的电子过滤方法,可以分离出有用的电信号,而不需要复杂的数据处理,或其他严格限制的操作条件。除了连接碱基,纳米孔,所有的传感器组件已通过其他研究小组用实验证实可行。这项研究的作者得出结论,该测序的新概念充满了希望,这可能是新一代颠覆时代的新概念。
2024-09-27
2024-12-03
2024-10-04
2024-10-14
2024-10-15
2024-10-30
2024-12-03
口服固体制剂作为临床应用非常广泛的剂型之一,其传统生产模式存在产尘量大、生产暴露环节众多以及工序复杂等特点。因此,在生产 OEB4-5 级标准的口服固体制剂时,面临的挑战是多方面的。本文从车间建设的角度出发,探讨了针对高毒性或高活性等固体制剂生产所需采取的技术手段与措施。
作者:卞强、陈宁
2001-2009Vogel Industry Media版权所有 京ICP备12020067号-15 京公网安备110102001177号
评论
加载更多