近日,国家纳米科学中心蒋兴宇课题组将平面上的细胞图案化技术和应力引发自卷曲技术结合,实现了多种细胞在三维管状结构上的层状分布。该研究的前期成果已于近日发表在国际期刊《先进材料》上,并被作为当期杂志的封面文章,此外还被Materials Views收录。纳米科学与技术的专业网站nanowerk对该研究成果也作了专题报道。 据介绍,人体内有许多管状的组织结构,这些组织大部分都具有一个共同特点:管壁都是由多层不同的细胞构成。例如,血管从内到外一般具有三层细胞结构:血管内皮细胞、平滑肌细胞和成纤维细胞。某些情况下,平滑肌细胞甚至有环形和纵形两种分布形式。如何在体外实现三维结构的多种细胞的可控分布,从而最真实地模拟体内组织的细胞分布情况,一直是研究的难点和热点。 蒋兴宇课题组以聚二甲基硅氧烷(PDMS)薄膜为例,采用双层膜结构,通过拉伸产生内应力使得这种双层膜可以从平面自发卷曲成多层管状结构。在平面的情况下,通过带有三条平行管道的PDMS芯片将三种细胞(血管内皮细胞、平滑肌细胞和成纤维细胞)依次输送到自卷曲膜的规定位置,释放自卷曲膜后,材料带着细胞自发卷曲成多层管结构,即最内层是血管内皮细胞,中层为平滑肌细胞,外层为成纤维细胞。 同时,在自卷曲膜的表面通过光刻和软刻蚀技术可以制备微结构,根据接触诱导的原理使得平滑肌细胞取向生长,在管结构中实现平滑肌细胞的环形和纵形分布。在材料的选择上,不仅仅局限于PDMS薄膜,其他可降解高分子的静电纺丝薄膜同样可以制备成管状结构,并能实现细胞在管结构中的层状分布。 该方法可用来制备其他具有复杂结构的管状结构,即先在二维平面上实现微纳米结构,再通过卷曲将这些结构变成三维。因为二维平面上进行图案化实现微纳米结构比在三维结构上直接图案化容易得多,所以该方法用于构建带有微纳米结构的三维管状结构是不错的选择。 该研究得到了国家自然科学基金、科技部和中科院项目基金的支持。
2025-04-10
2025-02-27
2025-02-14
2025-03-04
2025-02-14
2025-03-11
2025-03-27
随着数字化技术的成熟、网络的全面覆盖以及国家监管要求的提升,疫苗生产企业正从传统自动化与信息化系统相结合的生产方式,转向更为先进的数字化生产方式。这一转变旨在实现生产数据的电子化,提升疫苗的生产质量和效率,以满足更为严格的《药品生产质量管理规范》检查要求。本文深入分析了人用疫苗生产企业在数字化转型过程中遇到的难点,并针对关键问题提出了建议,探讨如何利用人工智能、大数据等前沿技术来应对数字化转型的挑战。
作者:靳鹏、刘荻飞、石献华
2001-2009Vogel Industry Media版权所有 京ICP备12020067号-15 京公网安备110102001177号
评论 0
正在获取数据......