英国斯特拉斯克莱德大学的科学家制成了目前最亮的伽马射线,其比太阳的亮度要高上万亿倍,为医疗和原子核研究等领域的应用开启了新的可能。相关研究报告发布在近期出版的《自然•物理学》杂志上。
该实验是在卢瑟福•阿普顿实验室的中央激光设施内进行的。除斯特拉斯克莱德大学外,格拉斯哥大学等也参与了此次研究。研究团队使用了新型的激光等离子体尾波场加速器,其利用大功率激光器发射持续时间超短的激光脉冲,与电离气体发生相互作用,加速带电粒子至极高能量,因此可将常见的长约100米的加速器缩小至手掌大小,比大多数传统设备更小巧,也更经济。而交互作用所发出的强烈光束,能够穿过厚度为20厘米的铅板,需要1.5米厚的混凝土才能完全吸收。此次测量到的伽马射线峰值亮度可超过每秒、每平方毫弧度、每平方毫米、每0.1%带宽1023个光子。
研究的主导者蒂诺•扎若斯兹恩斯基教授说:“这是一项很大的突破,能够更容易、更广泛地探测非常致密的物质,也使我们能够监视核聚变内爆。为了证明这点,我们借助伽马射线为25微米厚的电线拍照,并利用相位对比成像的方法形成了非常清晰的图像。这表示吸收力很弱的材料也能清晰成像,由伽马射线照射的物质只会留下十分微弱的阴影,因此可视为无形。”
扎若斯兹恩斯基补充说,事实上,如果加速电子等带电的粒子,它们会向外辐射。他们在放射强激光脉冲的离子洞中囚禁粒子,并加速使其达到高能量,洞中的电子同样也会和激光发生相互作用,从中获得能量而剧烈摆动。大幅的摇摆动作加上电子的高能量,使得光子能量陡增,从而产生伽马射线。
研究人员表示,这种射线有多种用途,可用于医疗成像、放射治疗和生产用于正电子断层扫描(PET)的放射性同位素。同样,这一来源对于监控存储的核废料也十分有用。此外,由于激光脉冲的持续时间短到千万亿分之一秒,能捕捉到原子核的应激反应,因此这一射线也成了实验室内对于原子核研究的理想选择。而无可匹敌的持续时间,也是伽马射线脉冲如此明亮的原因。
2024-09-02
2024-09-04
2024-09-23
2024-08-28
2024-09-27
2024-08-27
2024-09-09
近年来,RNA疗法及其在疾病治疗中的潜力备受关注,今年诺贝尔生理学或医学奖授予微小RNA(microRNA)领域的研究更是将这一热度推向高峰。在新药研发蓬勃发展的今天,小核酸药物被视为继小分子药和抗体药之后的“第三次制药浪潮”的关键力量。
作者:崔芳菲
2001-2009Vogel Industry Media版权所有 京ICP备12020067号-15 京公网安备110102001177号
评论
加载更多