Part
1
1.1
实验设备
图1 振动驱动粉末灌装系统示意图
1.2
实验材料
表1 吸入级乳糖样品物性
1.3
样品制备与处理
1.4
灌装剂量分析
Part
2
2.1
流量控制机理
2.2
灌装剂量均一性
图2 累加剂量与下料时间的关系
图3 Lactohale®100 单剂剂量分布
表2 不同样品目标剂量为5.5 mg的灌装结果
图4 气泡和阻塞现象对Respitose®ML003 单剂剂量分布的影响
2.3
振动电压对粉体平均灌装剂量的影响
2.4
振动时间对粉体平均灌装剂量的影响
Part
3
参考文献
[1]FAULHAMMER E, LLUSA M, RADEKE C, et al. The effects of material attributes on capsule fill weight and weight variability in dosator nozzle machines[J].International Journal of Pharmaceutics, 2014, 47(1/2):332–338.
[2]LLUSA M, FAULHAMMER E, BISERNI S, et al. The effects of powder compressibility, speed of capsule filling and pre-compression on plug densification[J]. International Journal of Pharmaceutics, 2014, 471(1/2): 182–188.
[3]EDWARDS D. Applications of capsule dosing techniques for use in dry powder inhalers[J]. Therapeutic Delivery,2010, 1(1): 195–201.
[4]STEGEMANN S, KOPP S, BORCHARD G, et al.Developing and advancing dry powder inhalation towards enhanced therapeutics[J]. European Journal of Pharmaceutical Sciences, 2013, 48(1/2): 181–194.
[5]DANIHER D I, ZHU J. Dry powder platform for pulmonary drug delivery[J]. Particuology, 2008, 6(4):225–238.
[6]PODCZECK F. The development of an instrumented tampfilling capsule machine I: Instrumentation of a Bosch GKF 400S machine and feasibility study[J]. European Journal of Pharmaceutical Sciences, 2000, 10(4): 267–274.
[7]PODCZECK F, NEWTON J M. Powder filling into hard gelatine capsules on a tamp filling machine[J].International Journal of Pharmaceutics, 1999, 185(2):237–254.
[8]NEWTON J M. Filling hard gelatin capsules by the dosator nozzle system--is it possible to predict where the powder goes? [J]. International Journal of Pharmaceutics, 2012,425(1/2): 73–74.
[9]LU X, YANG S, ChEN L, et al. Dry powder microfeeding system for solid freeform fabrication[C]//International Solid Freeform Fabrication Symposium, 2006: 636-643.
[10]BESENHARD M O, KARKALA S K, FAULHAMMER E, et al. Continuous feeding of low-dose APIs via periodic micro dosing[J]. International Journal of Pharmaceutics,2016, 509(1/2): 123–134.
[11]LI Z Q, YANG S F. Nanobiomaterials library synthesis for high-throughput screening using a dry powder printing method[J]. Nano Life, 2012, 2(1): 1250006.
[12]MATSUSAKA S, URAKAWA M, MASUDA H. Microfeeding of fine powders using a capillary tube with ultrasonic vibration[J]. Advanced Powder Technology,1995, 6(4): 283–293.
[13]LU X S, YANG S F, EVANS J R G. Studies on ultrasonic microfeeding of fine powders[J]. Journal of Physics D:
[14]Applied Physics, 2006, 39(11): 2444–2453.BESENHARD M O, FAULHAMMER E, FATHOLLAHI S, et al. Accuracy of micro powder dosing via a vibratory sieve-chute system[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94: 264–272.
[15]CHEN X L, SEYFANG K, STECKEL H. Development of a micro dosing system for fine powder using a vibrating capillary. Part 1: the investigation of factors influencing on the dosing performance[J]. International Journal of Pharmaceutics, 2012, 433(1/2): 34–41.
[16]CHEN X L, SEYFANG K, STECKEL H. Development of a micro-dosing system for fine powder using a vibrating capillary. Part 2: the implementation of a process analytical technology tool in a closed-loop dosing system[J].International Journal of Pharmaceutics, 2012, 433(1/2):42–50.
[17]SCHULZE D. Powders and bulk solids: Behavior,characterization, storage and flow[M]. Berlin: SpringerVerlag, 2008.
[18]FAULHAMMER E, FINK M, LLUSA M, et al. Low-dose capsule filling of inhalation products: Critical material attributes and process parameters[J]. International Journal of Pharmaceutics, 2014, 473(1/2): 617–626.
[19]HENDRICKS C D. Charging macroscopic particles[M]//MOORE A D. Electrostatics and Its Applications. New York: John Wiley and Sons, 1973.
[20]FENG J Q, HAYS D A. Relative importance of electrostatic forces on powder particles[J]. Powder Technolog, 2003, 135/136: 65–75.
[21]MATSUSAKA S, KOBAYAKAWA M, MIZUTANI M, et al. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow[J]. Scientific Reports, 2013, 3: 1190.
撰稿人 | 刘环、陈岚、李宗齐、陈东浩 上海理工大学学报
责任编辑 | 胡静
审核人 | 何发
2024-08-17
2024-09-02
2024-08-09
2024-08-06
2024-08-19
2024-08-15
2024-08-28
本文的目的是为了探讨注射用甲苯磺酸奥马环素的无菌方法开发及验证。通过采用薄膜过滤法,使用1mol·L-1硫酸镁溶液对样品及所用培养基进行处理,pH 7.0 氯化钠蛋白胨缓冲液(含 0.1% 组氨酸、0.3% 卵磷脂和 3% 吐温 80)进行冲洗,有效地消除了样品的抑菌性。得出的结论为采用 1 mol·L-1 硫酸镁溶液及 pH 7.0 氯化钠蛋白胨缓冲液(含 0.1% 组氨酸、0.3% 卵磷脂和 3% 吐温 80)可以有效地消除注射用甲苯磺酸奥马环素的抑菌性能,可以将该方法用于注射用甲苯磺酸奥马环素的无菌方法验证。
作者:印萍
评论
加载更多