图片来源:123RF
火热的人工智能领域
毫无疑问,产业在近些年来为人工智能领域倾注了大量的热情。根据DealForma的数据,自2014年以来,共有103起和人工智能以及机器学习的生物技术公司相关的风投轮次,总共募集到了51亿美元的资金。其中光在2021年,就有33亿美元,占总比的近三分之二。这些公司中,不乏一些耳熟能详的名字,比如获得4亿美元C轮融资的insitro,获得3.7亿美元融资的Generate Biomedicines,以及2.55亿美元融资的Insilico Medicine。
在研发许可方面,同期的市场则更为活跃——共有243项合作签署,前期付款和期权超过10亿美元,公布的总合作金额达到377亿美元。其中,仅仅是今年1月,数额就已经达到了约100亿美元。
insitro首席执行官Daphne Koller博士在接受Endpoints采访时提到,火热的人工智能领域背后,是产业对数据的看重,以及数据收集能力的爆发。在机器学习的史前时代(上世纪九十年代早期),如果一个数据集包含几百个样本,研究人员们就会认为它已经足够庞大了。然而对于机器学习,这样的数据集还是远远不够的。
2012年,这一领域逐渐出现了转变。“大数据”进入主流,数据科学也被证实能产生重要的影响。在大规模数据的训练下,算法模型已经能在无需人类提示的情况下,自行找到一些关键信息,用于区分图片或是不同的问题。也几乎在同一时期,生物医药领域开始拥抱人工智能技术:2012年到2014年期间,多家专攻人工智能的生物技术公司先后宣告成立。
在大量资金的涌入下,这些公司也有着长足的发展。终于,产业等来了历史性的一刻:由人工智能发现的候选药物分子,已经进入了临床试验。
临床试验的关键
2020年1月,位于英国的Exscientia宣布,其候选药物DSP-1181已进入1期临床试验,旨在治疗强迫症(OCD)。相关新闻也指出,这是首个由人工智能平台创造,并进入临床试验的分子——它来源于大规模化合物数据库的筛选。
图片来源:123RF
Recursion随后宣布有两款候选分子进入临床。Endpoints的深度报告指出,它们的诞生,依旧是通过传统的药物发现手段——一款来自Dean Li博士的实验室,另一款则是从俄亥俄州立大学获取的授权。但该公司的创新在于,利用人工智能平台,找到了这两款药物的新应用场景。
然而在热度之外,目前这些临床试验的结果还少之又少。同样是来自Endpoints的报告,作者提到目前仅有的数据来自Exscientia一项公开标签的1期篮子试验。Recursion尚未发表任何1期临床数据,尽管其“已经在为今年年初的2期临床试验做准备。”
“筹集的资金、风险投资的金额、与业务发展伙伴以及医药公司的前期合作规模,这些都是空泛的指标,”Nwankwo博士提到,“我们是一家生物技术公司,让我们来谈谈想要推向市场的药物,我觉得对此的关注还远远不够。对我而言,这不是正确的思考方式。”
重拾理性
Koller博士最担心的问题之一,在于人工智能技术一旦遭遇失利,是否会被其热度所反噬。她说在过去,生物医药产业曾有不少类似的例子:人们曾夸下海口,却最终遭遇失败,导致整个领域的停滞。在人工智能领域,即便第一批进入临床试验的药物没有取得预想中的结果,她也不希望就此终结投资者和研究人员们的热忱。
背后的原因很简单,与以往的泡沫不同,如今的人工智能技术表明它们真的可以给研发过程带来价值。驾驭了爆炸性的数据增长之后,强大的计算力能用于早期药物发现,或是让大规模的关键性试验变得更为高效。人工智能会对研发过程提供协助,只是我们还不知道协助的比例是多少,是5%?50%?还是80%?
为此,产业的领导者需要做的,是合理调整人们的预期,使其与实际情况结合起来。人们期待能快速看到结果,但成功要比速度更重要。
而调整预期的过程,可能需要大型药企与生物技术公司的共同努力。Endpoints的深度报告指出,目前不少大型药企正在建立自己的人工智能项目,而且正冷静地看待这项创新的工具。葛兰素史克的人工智能与机器学习全球负责人Kim Branson博士提到,在期待看到范式转变的同时,他也期望为这个领域设置合理的目标;诺华的人工智能创新实验室全球负责人Iya Khalil博士则指出,目前机器学习方面的努力很像当时的人类基因组计划。谁都不否认它的重要性,但单独解析出基因组的数据,并不能一下子带来数十种全新的药物。
图片来源:123RF
而生物技术公司也有望做得与众不同。Khalil博士点评指出,一个关键策略是在失败来临之前,先建立起足够的成功机遇。这样一来,即便遭遇失败,这个领域也能从失败中学习,变得更好。另外的一些策略则包括向其它公司提供服务,譬如Insilico Medicine也在为其它公司提供软件。通过使用这些工具,产业的研发人员能够评估研发项目的成功可能。该公司的首席执行官Alex Zhavoronkov博士在Endpoints的采访中提到。
人工智能的未来
大部分生物医药产业的人都相信,我们正处于一个转变期的开端。只是这个转变的幅度能有多大,目前还没有一个明确答案。乐观点讲,倘若上一个十年是属于数据科学的十年,那么这个十年,有可能成为人工智能的十年。问题在于,目前人工智能所获得的热度,是否能为产业带来与之相称的改变?
Koller博士指出,她在这一领域看到了大量的机会,因此不认为热度只是炒作。另一方面,她也指出率先的创新者,也须兼具相应的责任感,因为失败会给领域带来影响。“即便你有一个机器学习模型,能在好靶点的寻找上带来巨大变化,即便你能将成功率从5%提升到10%,或者是20%,失败仍然会是大多数,” Koller博士提到,“你需要真正有长远的目光,理解我们在药物发现领域所尝试做的事,是最困难的事之一。”
图片来源:123RF
这是因为生物学领域极为复杂,人体内的许多系统都相互交织。如果我们改变了其中的一处,从未设想过的另一处也有可能突然出现,带来问题。Koller博士在Endpoints的访谈里讲道。为此,研究人员们还有很长的路要走。在这条道路上,人工智能与科研人员的通力合作,有望产生新的变革。
本文来源于药明康德
2024-09-23
2024-09-27
2024-12-03
2024-10-04
2024-10-14
2024-10-15
2024-12-03
口服固体制剂作为临床应用非常广泛的剂型之一,其传统生产模式存在产尘量大、生产暴露环节众多以及工序复杂等特点。因此,在生产 OEB4-5 级标准的口服固体制剂时,面临的挑战是多方面的。本文从车间建设的角度出发,探讨了针对高毒性或高活性等固体制剂生产所需采取的技术手段与措施。
作者:卞强、陈宁
评论
加载更多