核酸药物主要分为小核酸药物和mRNA两大类,小核酸药物,即寡核苷酸药物,包括反义核酸(ASO)、小干扰核酸(siRNA)、微小RNA(miRNA)、核酸适配体(Aptamer)及其他。mRNA产品可分为mRNA疫苗和mRNA药物。
核酸药物拥有明显优势。传统的小分子化药和抗体药物多是通过与靶点蛋白结合发挥作用,但两者的研发受到靶点蛋白可成药性的限制,而核酸类药物是通过与蛋白质表达相关的基因进行调节,对细胞内外和细胞膜蛋白均可发挥调节作用,而且多数核酸类药物的作用基础是碱基互补配对原则,只需知道靶基因的碱基序列,核酸药物的序列设计就较为容易。
然而,其不稳定性、免疫原性、细胞摄取效率低、内吞体逃逸难等缺陷限制了核酸药物的发展,为了解决核酸药物分子本身相关的挑战,开发能够促进核酸吸收到靶细胞的递送载体系统成为关键。这些递送载体需要克服细胞外和细胞内的屏障,耐受血液中的核酸酶活性,增强和协助核酸药物细胞摄取,并在进入细胞后促进核酸药物内体逃逸。
早期研究多使用病毒作为递送核酸的载体,临床实验使用的病毒载体包括:腺病毒(Ad)、腺相关病毒(AAV)、慢病毒(LV)、单纯疱疹病毒(HSV)等。然而,一些病毒载体的不良特性,包括潜在的致癌性、高免疫原性等会导致严重的临床不良事件,影响了对病毒载体临床应用的研究。随着材料和制备技术的发展,价格低廉、易合成、易纯化、具有高转染效率和低免疫原性的非病毒载体成为递送核酸药物的“最佳候选人”。
GalNac(N-乙酰化的半乳糖胺)偶联修饰,是当前最常用的核酸药物递送系统, GalNac是一种乳糖类似物通过将GalNac以三价态的方式共价偶联至核酸3‘末端构成。
GalNac-siRNA偶联化合物经皮下注射后,能够迅速通过循环系统进入肝脏,之后经ASPGR受体介导快速被肝脏细胞内吞,并在溶酶体中积聚、缓慢释放,持久不断地装载到RNA诱导沉默复合体(RISC)上,从而实现长效抑制作用。
目前,GalNAc修饰的药物主要有GalNAc-反义核酸(ASO)与GalNAc-siRNA,由于治疗上有效的ASO已经是经过大量修饰的,因此递送载体并不是必须的。而siRNA因为其本身容易降解,所以多采用载体递送技术。目前,利用GalNac技术上市及进入临床阶段的药物可见表1。
脂质纳米颗粒(Lipid Nanoparticle,LNP),是脂质载体给药系统中的重要技术之一。
主要成分分为以下四种:
可电离的阳离子磷脂为最关键的辅料,是递送和转染效率的决定性因素,由于其比较容易被抗原呈递细胞吸收,因此常应用于疫苗;
中性辅助磷脂,一般为饱和磷脂,可提高阳离子脂质体的相变温度,支持层状脂质双层结构的形成并稳定其结构排列;
胆固醇,有较强的膜融合性,促进mRNA胞内摄入和胞质进入;
聚乙二醇修饰的磷脂(PEGylated lipid),位于脂质纳米粒表面,改善其亲水性,避免被免疫系统快速清除,防止颗粒聚集,增加稳定性。
目前利用LNP技术已有三款上市药物及十几款临床期的药物,下表列举了一些代表性的药物。
表2. 利用LNP技术上市及临床的代表药物
阳离子聚合物因其易于合成和灵活的特性,成为非病毒基因递送载体的另一个主要类型。聚合物可以与核酸结合,在生理pH下形成多聚复合物,以促进基因递送。通常情况下,聚合物纳米颗粒具有带正电的单元,可促进与核酸的静电结合。此外,通过使用可降解的连接物,也可实现核酸与聚合物的共价连接。常见的聚合物材料包括聚乙烯亚胺(PEI)、壳聚糖(CS)。
另一类递送RNA的聚合物,称为树枝状大分子(dendrimers)。这些大分子以一个核心分子为中心,通过重复增长反应合成具有高度分支的聚合物。携带阳离子基团的树枝状大分子,可以与RNA生成复合物。已有研究显示,它们可以将RNA递送到中枢神经系统,将siRNA递送到肝脏内皮细胞中。改造树枝状大分子的结构,可以保护核苷酸不被酶降解。
siG12D-LODER是一种可生物降解的聚合物基质,含有针对KRASG12D的siRNA。目前,诺华正在针对siG12D-LODER进行二期临床研究,以测试siG12D-LODER与化疗药物(如吉西他滨和紫杉醇)联合治疗局部晚期胰腺癌患者的疗效。
1、金纳米颗粒
金纳米粒子具有独特的光学特性、合成简单和表面功能化的特性,可通过共价或非共价缀合与核酸选择性协同修饰。核酸链通过硫醇基团共价连接到金纳米颗粒核心上(通常为13-15 nm)。这一策略可用于DNA和siRNA,它们可以直接连接到金核或聚合物修饰的金核上。
球形核酸(SNA)是由排列在小球形金纳米颗粒表面的核酸组成。目前该平台药物NU-0129正在进行一项复发性胶质瘤的临床1期的研究。NU-0129穿过血脑屏障一旦进入肿瘤,核酸成分就能够靶向一种名为Bcl2L12的基因。研究人员认为,用NU-0129靶向Bcl2L12基因,将有助于阻止胶质瘤的生长。
2、二氧化硅纳米颗粒
二氧化硅纳米颗粒(直径100-250nm),由于其良好的生物相容性和可调性而被用于核酸递送。通常,核酸分子通过弱的非共价相互作用,被装载到二氧化硅纳米颗粒中。小孔(2.5-5 nm)的二氧化硅纳米颗粒适合于传递小的siRNA。
3、氧化铁纳米颗粒
氧化铁纳米颗粒(由Fe3O4或Fe2O3组成)具有一定尺寸的超顺磁性,作为输送载体和基于磁热的疗法显示出了成功的效果。阳离子氧化铁纳米颗粒与阴离子核酸药物,通过静电相互结合。50-100nm的脂类包裹的氧化铁纳米颗粒,显示出最佳的siRNA递送活性。
外泌体是内涵体来源,经由多泡体与质膜融合以后释放到细胞外的,直径介于50-150nm之间的膜性囊泡状小体。外泌体内部含有多种生物学大分子,包括蛋白质、核酸和磷脂等。
外泌体可在细胞间传输各种各样的生物大分子,因此作为一种药物递送方式,具有显著的先天优势:
首先,外泌体是“天然驯化”的纳米载体,本身内含多种有效成分,因此可以适用的负载药物成分类型非常丰富,包括小分子、核酸和重组蛋白等;
其次,外泌体是内源性的纳米颗粒,免疫源性较低,因此安全性高;
第三,外泌体可以循环至人体所有的腔室,具有比较好的组织选择性;
最后,可以对外泌体进行复杂的工程化改造,通过基因或者化学等方式,对外泌体的成分以及生物学功能进行调控,从而能够更好地服务于我们的治疗目的。
表3. 外泌体递送核酸药物研究情况
目前已上市的核酸药物递送采用的技术,无法解决特定组织的靶向性问题,多肽可以解决许多其它递送系统无法解决的问题。非天然氨基酸的化学修饰,极大地提高了多肽药物在体内的半衰期,环肽技术发展增加了多肽结构的刚性、环肽与靶蛋白接触面积大增强其亲和力,PDC药物具有强力的肿瘤穿透性、无免疫原性、肾代谢等特点。
目前,Ionis、Alnylam 、Entrada Therapeutics等公司纷纷建立多肽核酸偶联药物平台,多肽核酸偶联物未来可期。
科学大牛张锋创立的Aera Therapeutics推出了一种名为蛋白纳米颗粒(Protein Nanoparticles,PNP)的新型递送平台,利用内源性人类蛋白质,解决当前递送技术的局限。
专注于RNA疗法的生物技术公司Altamira Therapeutics宣布,其正在研发一种新颖的基于肽的SemaPhore纳米颗粒技术平台。该递送平台被设计用于通过全身或局部给药,可安全有效地将寡核苷酸如siRNA以及mRNA递送到靶细胞中。目前,该公司基于此平台已建立了2条在研siRNA项目临床前管线,用于治疗KRAS驱动癌症和类风湿性关节炎。
参考文献:
撰稿人 | 幻目 药渡
责任编辑 | 胡静
审核人 | 何发
2024-09-02
2024-09-04
2024-09-23
2024-08-28
2024-09-27
2024-08-27
2024-09-09
近年来,RNA疗法及其在疾病治疗中的潜力备受关注,今年诺贝尔生理学或医学奖授予微小RNA(microRNA)领域的研究更是将这一热度推向高峰。在新药研发蓬勃发展的今天,小核酸药物被视为继小分子药和抗体药之后的“第三次制药浪潮”的关键力量。
作者:崔芳菲
评论
加载更多